A Simple Method to Reduce Torque Ripple in Direct Torque Controlled Permanent Magnet Synchronous Motor by Using Voltage Vectors with Variable Amplitude and Position

نویسندگان

  • Yongchang Zhang
  • Jianguo Zhu
  • Youguang Guo
چکیده

In this paper, a modified direct torque control (DTC) for permanent magnet synchronous machine is proposed, which enables important torque and flux ripple reduction by using voltage vectors with variable amplitude and angle. Conventional DTC presents some drawbacks, including large torque ripple, variable switching frequency and acoustic noise. The reason lies in that t h e switching table is composed of a limited number of discrete voltage vectors with fixed amplitude and position. Moreover, the selected vector will work during the whole sampling period, a n d hence their effects on torque and flux may usually be too large or too small. In the proposed DTC, the amplitudes of torque and flux errors are differentiated and they are employed to regulate the amplitude and position of the output voltage vectors on-line, which would finally be synthesized by space vector modulation (SVM). Two simple formulas are developed to derive the amplitude and position of the commanding voltage vectors from the errors of torque and flux. Conventional switching table and hysteresis controllers are eliminated and fixed switching frequency is obtained with the help of SVM. Stator flux is estimated from an improved voltage model, which is based on a low-pass filter with compensations of the amplitude and phase. The proposed DTC exhibits excellent dynamic performance and significant torque ripple reduction at steady state, which are validated by the presented simulation and experimental results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive Voltage-based Control of Direct-drive Robots Driven by Permanent Magnet Synchronous Motors

Tracking control of the direct-drive robot manipulators in high-speed is a challenging problem. The Coriolis and centrifugal torques become dominant in the high-speed motion control. The dynamical model of the robotic system including the robot manipulator and actuators is highly nonlinear, heavily coupled, uncertain and computationally extensive in non-companion form. In order to overcome thes...

متن کامل

Voltage Control Strategy for Direct-drive Robots Driven by Permanent Magnet Synchronous Motors

Torque control strategy is a common strategy to control robotic manipulators. However, it becomes complex duo to manipulator dynamics. In addition, position control of Permanent Magnet Synchronous Motors (PMSMs) is a complicated control. Therefore, tracking control of robots driven by PMSMs is a challenging problem. This article presents a novel tracking control of electrically driven robots wh...

متن کامل

Performance Improvement of Direct Torque Controlled Interior Permanent Magnet Synchronous Motor Drives Using Artificial Intelligence

The main theme of this paper is to present novel controller, which is a genetic based fuzzy Logic controller, for interior permanent magnet synchronous motor drives with direct torque control. A radial basis function network has been used for online tuning of the genetic based fuzzy logic controller. Initially different operating conditions are obtained based on motor dynamics incorporating...

متن کامل

Comprehensive Design Procedure and Manufacturing of Permanent Magnet Assisted Synchronous Reluctance Motor

Combining the main advantages of the permanent magnet synchronous motors and pure synchronous reluctance motors (SynRM), permanent magnet assisted synchronous reluctance motor (PMaSynRM) has been considered as a promising alternative to the conventional induction motors. In this paper, utilizing a macroscopic design parameter, called insulation ratio along the q-axis, and based on the magnetic ...

متن کامل

Optimal Design of Axial Flux Permanent Magnet Synchronous Motor for Electric Vehicle Applications Using GAand FEM

Axial Flux Permanent Magnet (AFPM) machines are attractive candidates for Electric Vehicles (EVs) applications due to their axial compact structure, high efficiency, high power and torque density. This paper presents general design characteristics of AFPM machines. Moreover, torque density of the machine which is selected as main objective function, is enhanced by using Genetic Algorithm (GA) a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013